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Abstract

Scoring auctions are an appropriate purchasing mechanism if the buyer values the auc-

tioned good in more attributes than just the price. In contrast to ordinary procure-

ment auctions, such auctions facilitate a range of different allocation and payment rules.

However, exactly as in ordinary procurement auctions there exist incentive compatible

scoring auctions where truthful revelation of costs and quality is an optimal bidding

strategy. Such scoring auctions are of special interest in the energy sector. There are dif-

ferent energy markets where electricity generators compete and an independent system

operator is eager to know the true generation costs. In this special case, the marginal

electricity generation costs are interpreted as quality whereas the stand-by costs of a

power plant are the fixed costs in terms of a scoring auction. We formally analyze

two different models that apply scoring auctions to the energy sector. We prove that

these approaches can under some assumptions lead to the desired results. In general,

scoring auctions can be implemented explicitly or implicitly but both result in the same

outcome. This result contradicts with the opinion of some authors in that research area

who claim that their model is superior to another. We prove this equivalence and give

an outlook on the implications. Furthermore, we give a brief prospect on where and

how explicit and implicit scoring auctions can also be applied.
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1. Introduction

There are many different forms of commercial electricity generation worldwide, from

nuclear power plants over coal-fired power plants to photovoltaic power plants. Differ-

ences in the functioning and fueling lead to differences on the economic view of these

electricity generation plants. Depending on the individual situation, one type of power

plant may be more meaningful and economic than another. The economic differentia-

tion is based on different cost types, including fuel costs, operating costs and mainte-

nance costs among others. Hence, there is no one price tag for one unit of electricity

(usually in MWh) for one power plant but the overall costs are a function of different

parameters.

To dispatch all power generating facilities efficiently, i.e. to use those power plants at

each moment in time that cause the least overall costs to produce the required amount

of electricity, the responsible system operator has to know all these costs. That is

not a major problem in an integrated energy market where system operator and power

plants are part of one superior energy company but it is a challenge in all energy market

where different energy generation facilities (current or future) compete with each other.

This challenge arose through the liberalization of the energy market in some countries

which resulted in power plants competing with each other. Thereby, two markets are

of special interest, the one for integrating new power plants into an existing grid and

the balancing power market.

A powerful market mechanism to cope with this challenge are scoring auctions. The

next section will give a compact introduction to this concept before Sections 3.1 and

3.2 will give theoretic examples of an application of this concept to the energy market.

After an comparison of both concepts in Section 3.3, Section 4 concludes this work.
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2. Scoring Auctions

A scoring (procurement) auction can be applied if the auctioned good is character-

ized by multiple attributes. Besides the price, this attributes are usually referred as

quality level of the good and examples are product characteristics (Che, 1993), lead

time (Herbsman et al., 1995) or logistics and transportation costs (Kostamis et al.,

2009). The following introduction and the notation is based on the work of (Asker and

Cantillon, 2008) and (Asker and Cantillon, 2010).

The auctioneer purchases one indivisible unit of a good that is characterized by its

price p and its quality level q ∈ RM
+ where M ≥ 1 represent the M different attributes

described as quality. The set of bidders participating in the auction is N = {1, ..., n}

with n ∈ N. The auctioneer values the quality q of the good according to the valuation

function v : RM
+ → R : (q) → v(q) and thus πA(p, q) = v(q) − P is the auctioneer’s

profit from acquiring a good with quality q for price p.

It is assumed that each bidder i ∈ N can decide separately which quality q to offer

and is furthermore characterized by his type θi ∈ RK with K ≥ 1. This type generally

reflects the bidders’ (cost) structure. The resulting costs for supplying a good of quality

q given type θi is then given by the cost function c : R × RK → R : (q, θi) → c(q, θi).

The profit of the awarded bidder from selling a good (p, q) given his type θi is then

given by πB(p, q, θi) = p− c(q, θi).

Both, v(q) and c(q, θi) are twice continuously differentiable and increasing in q1. The

difference function w(q, θi) = v(q)− c(q, θi) is bounded and concave and represents the

social welfare gain of the transaction of a good (p, q) from a bidder with type θi. v(q)

and c(q, θi) are common knowledge among bidders and auctioneer except bidders type

θi for i ∈ N . These types are independently distributed according to the continuous

1The auctioneer values a good of higher quality higher and the bidder has higher costs to supply a
good of higher quality
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density function f(·) and the corresponding cumulative distribution function F (·). f(·)

and F (·) are also common knowledge.

The scoring rule S of an auction determines an continuous preference relation to

any good (p, q). Hence, S can formally be described as S : R × RM
+ → R : (p, q) →

S(p, q). We assume the auctioneer to aim for efficient results and thus the scoring rule

is equivalent to the auctioneers profit S(p, q) = v(q)− p. As a result, S is quasi-linear

as well as increasing and twice continuously differentiable in q.

Every bidder i ∈ N submits either a bid of the type (bpi , b
q
i ) ∈ R×RM

+ or equivalently

bi = S(bpi , b
q
i ). The bidder with the highest score is awarded in the auction 2. In contrast

to a price only auction, there are more varieties to the standard first- and second-price

auctions. A first-price auction could imply that an awarded bidder i has to supply a

good (p, q) with (p, q) = (bpi , b
q
i ) but it is also possible that he has only to fulfill the

condition S(p, q) = bi. There are even more possibilities when considering second-

price auctions. For the remainder of this paper we will speak of first- and second-

score auctions which means that the awarded bidder has to supply a good (p, q) with

S(p, q) = Sw = S(pw, qw) where (pw, qw) is either in case of a first-score auction the

bid of the awarded bidder or in case of the second-score auction the bid of the best not

awarded bidder.3

Given those conditions, an awarded bidder i with type θi seeks to maximize his profit

πB(p, q, θi with the restriction that the supplied good (p, q) satisfies the requirement

S(p, q) = Sw. Independent of the pricing rule, the maximization problem in case of

winning is thus

2In case of a multi-unit auctions with a k good demand, the bidders with the k highest scores are
awarded.

3The analysis regarding the equilibrium will show that this restriction does not affect the bidding
behavior for most variations of this pricing rules.
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max
(p,q)
{p− c(q, θi)} (1)

s.t. v(q)− p = Sw. (2)

Solving (2) for p and substituting it into (1) leads to

max
q
{v(q)− c(q, θi)− Sw}. (3)

Hence, for every bidder i ∈ N there is a quality q∗i which maximizes (3) which

is independent of Sw and thus also maximizes bidders profit. As an implication, a

bidder will always supply a good of quality q∗i independent of the score he has to fulfill.

Moreover, this quality also maximizes the social welfare w(q, θi). The maximum social

welfare a specific bidder i can generate w(q∗i , θi) is, given the valuation and cost function,

solely determined by the bidder’s type θi and in the following this is called the bidder’s

pseudotype λ(θi) with

λ(θi) = max
q
{v(q)− c(q, θi)}. (4)

The higher the pseudotype λ(θi) of a bidder, the lower are the costs of this bidder

to fulfill any Score S. Furthermore, there is no incentive for a bidder to deviate from

his specific quality q∗i as an increase in the quality would lead to a higher rise of costs

than of valuation. The pseudotype λ(θi) of any bidder i inN is defined as soon as

valuation and cost functions are given. Thus, from the distribution function F (·) of Θ

the distribution function G(·) with corresponding density function g(·) of Λ(Θ) can be

derived. Bidder i’s expected profit can be calculated as
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ES[πi(b
p
i , b

q
i , θi] = (λ(θi)− Sw)P (S(bpi , b

q
i ) > max

j∈N,i 6=j
S(bpj , b

q
j)) (5)

which is the same problem as in a standard IPV auction and thus the same solution

concepts apply. An important implication of this finding is that a second-score auction

is incentive compatible, both in the price as well as in the quality component.

3. Application of Scoring Auctions in the Energy Sector

In the energy sector and more particular in the field of electricity generation scoring

auctions can be applied. In general, different electricity generation plants at different

locations, with different technologies and with different preconditions supply electricity

for a given market (Wilson, 2002). These variety of generators is caused by the special

characteristics of the electricity market. These special characteristics are explained

simplified hereafter.

A general principle of the electricity market is that supply and demand have to be

balanced at any moment in time. The balancing is the assignment of the so called system

operator. The system operator can not influence the electricity demand, hence, he has

to dispatch the electricity generation to balance the system. The fluctuation in demand

and the need for dispatching the plants leads to fluctuating market prices for electricity.

Those fluctuations can be represented by two curves, the load-duration curve and the

cost-duration curve. The load duration curve l(t) ∈ [0, 1] represents the cumulative

electricity demand distribution over time. It assigns to every load level l ∈ R+ the

percentage of a given time period t(l) where at least this load level is reached. Hence,

there result the following properties for the load-duration curve: l→∞ : t(l)→ 0 and

l→ 0 : t(l)→ 1.

The cost-duration curve γ(pc) ∈ [0, 1] connects the load-duration curve l(t) with the
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merit order of a given electricity market.4 The result is a curve that assigns to every

price pcR+ the percentage of a given time period γ(pc) where the price for electricity is

at least as high as pc. These curve contains valuable information for potential electricity

generators as they can estimate potential revenues from selling electricity at the market

depending on their marginal costs of providing electricity.

Figure 1: Example of a cost-duration curve.

As a result of this market structure, there is a need for different types of electricity

generation plants with different characteristics. Broadly speaking, every power plant i of

all power plants N = {1, ..., n} can economically be described by two cost components.

A fixed component ki ∈ R+ that represents the costs to hold the plant available,

i.e. costs for maintenance, permanent personal, etc., and is independent of the actual

electricity generation. The other cost component ci ∈ R+ represents the variable costs

of producing electricity. Those costs are also referred to as marginal costs and include

4The merit order is the increasing order of the marginal costs of all power plants in the market with
their respective capacity.
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fuel costs and costs of operation. For the remainder of this paper, we will assume that

ci and ki are independently distributed according to the density functions f(·) and g(·)

and the respective cumulative distribution functions F (·) and G(·) respectively.

3.1. Concept of Bushnell and Oren (1994)

Bushnell and Oren (1994) apply the concepts of scoring auctions to a field of the

electricity market that emerged from the deregulation in the energy sector, in particular

private power plants compete with each other in an electricity market. In case a new

plant is needed, the main question is which plant i offers the best combination of ki

and ci to the system operator. Thereby it is crucial for the system operator to know

the true marginal electricity generation costs ci to efficiently dispatch all plants within

the market. The authors make the following notable assumptions to the model. First,

the cost-duration curve γ(pc) is common knowledge among the competitors. Second,

each new plant would only add marginal capacity to the whole market. And third, each

plant receives for the whole time it is called, i.e. it produces electricity for the market,

the same price pc for the delivered electricity. This section first derives scoring and

payment rule to the general principles of a scoring auction and then compares them to

the results of Bushnell and Oren (1994). At the end of the section, the pseudotype and

bidding behavior are derived in accordance with the approach of Asker and Cantillon

(2008).

Scoring and Payment Rule

For the winning bidder i this yields to a payoff of πi(p
k, pc, ki, ci) = (pk− ki) + (pc−

ci)γ(pc), where pk is the compensation the winning bidder receives for the fixed costs

ki. An implication of this design is that the bids are of the following form for every

bidder i ∈ N : (bki , b
c
i), where bki represents the fixed bid component and bci the variable

one. The determination of the buyer’s profit is much harder. First of all, it is obvious
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that it is linear in the fixed payment pk and thus the variable payment per energy unit

pc is viewed as quality in this model due to the following reasoning. The auctioneer,

i.e. the system operator, has to pay a fixed price to obtain the opportunity to receive

electricity at a specific rate from the bidder but also to curtail the power generation

of this specific bidder. A specific price change in the fixed payment always leads to

the same change in profit independent of the base value. That does not hold for the

variable payment. As a result the following formula can be interpreted as the buyers

payoff: πA(pk, pc) = v(pc)− pk.

Figure 2: Simplified example of a cost-duration curve with two different prices.

The remaining question is, what is the valuation? A natural approach would be to

measure the costs a specific variable payment per energy unit pc induces. It is obvious

that a lower price should have a higher valuations than a higher price. So the pure

payment the bidder receives for the electricity generation is not the correct choice.

This is illustrated in the simplified example of Figure 2. In this example there are two

players, 1 and 2, with two prices pc1 and pc2 respectively. It can be clearly seen that pc2 is
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lower than pc1 and should be higher valued by the auctioneer. Hence, if one compares the

payments both players would receive, which is highlighted by the correspond shaded

areas, one can recognize that it is the same for each player. Player 1 supplies less

energy but for a higher price and for player 2 it is vice versa. There could even be a

cost-duration curve where every potential price would result in the same payment.

The right choice is to take the advantage the auctioneer has from a participating

bidder over the status quo into account. Therefore, it is not important to know some-

thing about costs of the winning bidder but just what price he receives for supplying

electricity. In Figure 1 this price is denoted by pc∗ and the corresponding revenue is

the shaded area. This payment is not crucial as the buyer would have to pay this price

for the energy anyway due to the fact that the participation of an additional bidder

changes the cost-duration curve just infinitesimal (see assumption above). But since

there is a supplier who potentially generates energy for the price pc∗, all suppliers with

higher costs are now more often curtailed. The difference for each supplier individually

is infinitesimal, but for the buyer this means savings for every hour with a price above

p(γ) = pc∗, where p(γ) is the inverse function of γ(pc). These savings are illustrated in

Figure 1 as the white area A between price pc∗ and cost-duration curve. As a result the

valuation for a specific variable price pc for the buyer is as follows

v(pc) =

∫ γ(pc)

0

(p(γ)− pc)dγ. (6)

As we assume that the system operator seeks for an efficient market, the scoring

rule is then defined as

S(bk, bc) =

∫ γ(bc)

0

(p(γ)− bc)dγ − bk. (7)

For the payment rule, it is from utmost importance that it leads to incentive com-
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patible bidding behavior, especially regarding the variable cost component. In Section 2

we showed that a second-score payment rule leads to the desired behavior. So how does

a second-score payment rule look like in this case? We consider a winning bidder i and

the first losing bidder j and their bids bi = (bki , b
c
i) and bj = (bkj , b

c
j) respectively. The

scoring function S(bk, bc) maps these bids onto a score si = S(bki , b
c
i) and sj = S(bkj , b

c
j).

As we know that i won the auction it immediately follows that si > sj but there is no

statement regarding the relationship of the fixed or variable components of the score of

these two bidders possible. As already mentioned, the marginal electricity costs are re-

garded as quality and thus, there is the intention to pay the winning bidder the variable

costs pc = bci . As a result, the second-price characteristic can only be implemented in

the fixed cost compensation payment pk. Hence, this condition combined with the idea

of a second-score payment rule implies that the winning bidder receives a compensation

payment pk, while retaining her quality bid bc as variable payment, that would gain

the same score as the second highest bidder bid sj = S(pk, bci). Defining the inverse

function of the scoring rule as

S−1(s, bc) = min
{
bk|S(bk, bc) = s

}
leads to the following payment rule for the winning bidder i given that j is the first

losing bidder with S(bkj , b
c
j) = sj:

pc = bci (8)

pk = S−1(sj, b
c
i). (9)

Given scoring rule (7), the inverse function and thus payment rule for the fixed

compensation payment is
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pk = bkj +

∫ bcj

bci

γ(pc)dpc. (10)

Thus the winning bidder i receives the fixed bid of the first losing bidder j plus the

additional savings her variable bid generates for the buyer in comparison to that of the

first losing bidder.

Comparison with results of Bushnell and Oren (1994)

We derived both, the scoring rule and the payment rule in this section, by applying

the principles of scoring rules from Section 2. We will now compare those rules with

the findings of Bushnell and Oren (1994), which claim to lead to truthful revelation of

the marginal electricity costs. Therefore, they deploy three propositions that lead to

two main conditions. Firstly, the payment rule has to look exactly like described in (8)

and (9) 5. Secondly, the scoring rule must be of the following form

S(bk, bc) = V (bk +

∫ bc

o

γ(pc)dpc), (11)

where V (·) is a strictly decreasing function. The outcome is then invariant to the

specific form of V (·).6 In the following, we prove that scoring rule (7) satisfies this

condition.

Proof that scoring rule (7) satisfies (11). First we consider the entire area underneath

the cost-duration curve in Figure 1 as a constant. This area, called C is given by

C =

∫ pcMAX

0

γ(pc)dpc,

5Proposition 2 in (Bushnell and Oren, 1994).
6Proposition 3 in Bushnell and Oren (1994) where V (·) is denoted as strictly increasing function

because in their model the bidder with the lowest score wins the auction unlike the model described
here, where the highest score wins. Therefore, the scoring rule has a reversed sign.
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where pcMAX < ∞ is the highest possible price and γ(pcMAX) = 0. C has the same

value for every bidder and every potential marginal electricity cost bid. The specific

realization of V (·) that leads from (11) to (7) is V (x) = −x + C which is a strictly

decreasing function in x.7

S(bk, bc) = −(bk +

∫ bc

o

γ(pc)dpc) + C

= −bk −
∫ bc

o

γ(pc)dpc +

∫ pcMAX

0

γ(pc)dpc

= −bk +

∫ pcMAX

bc
γ(pc)dpc

= −bk −
∫ γ(pcMAX)

γ(bc)

p(γ)dγ + pcMAXγ(pcMAX)− bcγ(bc)

= −bk +

∫ γ(bc)

0

p(γ)dγ − bcγ(bc)

=

∫ γ(bc)

0

(p(γ)− bc)dγ − bk.

Pseudotypes

The last paragraph proved that scoring and payment rule correspond to the results

of Bushnell and Oren (1994), we will now show that it also holds given the general

maximization calculus in a second-score auction. Furthermore, we will derive the corre-

sponding pseudotype for this model. If the variable energy price is interpreted as quality

7Laisant (1905) proves that the fourth equation holds.
The intuition behind this proof is as follows. In Figure 1, the scoring rule (7) suggests to add the area
which is denoted A to the score. However (11) implies to subtract the shaded rectangle and the area
on the right hand side, which is denoted B, from the score. Comparing the areas (A compared to B
plus the shaded area), both have the same value for each possible bid bc up to a positive constant.
This constant is the area underneath the curve γ(pc), which is here denoted C. It can proved that this
area is the same for each bidder and each potential bid and the result of a summation of the entire
area C, B and the shaded area is area A.
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in this scoring auction, the cost function for a bidder i with fixed cost component ki and

variable cost component ci to deliver a good of quality bci is c(bci , ki, ci) = ki−(bci−ci)γ(bci)

and thus the optimization problem the winning bidder faces is as follows

max
(bki ,b

c
i )

{
bki − c(bci , ki, ci)

}
s.t. v(bci)− bki = sj,

where sj corresponds to the score the winning bidder has to satisfy. Substituting bki

into the maximization problem leads to

max
(bci )
{v(bci)− sj + (bci − ci)γ(bci)− ki} .

As sj is a constant from bidders’ perspective, the value of bci that maximizes the

payoff is independent of sj and hence the pseudotype λ(ki, ci) of bidder i is

λ(ki, ci) = max
(bci )
{v(bci) + (bci − ci)γ(bci)− ki} , (12)

which is equal to the maximum social surplus bidder i could generate. So the same

interpretation as in Section 2 holds. We now prove that bci = ci maximizes (12) and

thus the payoff of bidder i.

Proof that bci = ci maximizes (12). To find the derivation of the maximization problem

of (12) the derivation of the valuation function v(bci) =
∫ γ(bci )
0

p(γ)− bcidγ is required

∂v

∂bci
= −γ(bci).

This result leads to the following first-order condition
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∂

∂bci
=
∂v

∂bci
+ γ(bci) + (bci − ci)

∂γ

∂bci

= −γ(bci) + γ(bci) + (bci − ci)
∂γ

∂bci

= (bci − ci)
∂γ

∂bci

!
= 0.

As the derivation of γ(bci) is unequal to zero for all feasible bci the unique solution is

bci = ci.

For the sake of completeness the result of the second-order condition is

∂2

∂2bci
(ci) =

∂γ

∂bci
(ci) + (bci − ci)

∂2γ

∂2bci
(ci)

=
∂γ

∂bci
(ci) < 0

and hence satisfies the requirements of a (local) maximum.

The resulting pseudotype

λ(ki, ci) = v(ci)− ki (13)

is exactly the score of the true costs. In a second-score auction the optimal bidding

strategy is consequently bi = (bki , b
c
i) = (ki, ci), that is truth-revealing.

3.2. Concept of Chao and Wilson (2002)

The main critique of the model of Bushnell and Oren (1994) is the assumption

regarding the cost-duration curve γ(pc). It is assumed that neither a bidder can have

influence on this curve nor does it change over time. Furthermore, all bidders believe
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that γ(pc) is correct. In a dynamic and long-term market like in the energy sector,

these assumptions are hard to maintain. This is in particular true for the balancing

power market. This market, which is also part of the energy sector, contrasts with the

market for new electricity generation plants that was discussed in the previous section

as it does not consider only one additional unit of infinitesimal capacity but the whole

market capacity will be tendered (Wilson, 2002). Obviously, the assumptions regarding

γ(pc) do not hold any more in this case. In this section, we will describe the model

of Chao and Wilson (2002) that avoids, on its own admission, the problems regarding

γ(pc) and subsequently analyze it regarding bidding behavior to check whether it keeps

its promise.

Although both markets are different, in the formal description there are many sim-

ilarities. First, we will simplify the market in that sense that we assume all bidders

to bid the same capacity that is, compared to the overall market volume, too small to

influence the market price. Furthermore, we will only consider the market for positive

balancing power, the reasoning for the negative market is analogous. Secondly, the

bidders in this market can again economically be described by two cost components

ki and ci although the interpretation is different. ki are the stand-by costs of a power

plant. It can not participate electricity wholesale market and has to maintain readiness

of the plant. ci are again the costs of actually running the plant. From an auctioneer’s

perspective it is again of utmost interest to know the true variable costs ci of the bidders

to determine the efficient order of the generation calls.

The demand for balancing power fluctuates during a given time period as demand

forecast and the actual demand coincide more or less during this time span. Thus, there

are different market prices depending on the balancing power demand. The price, the

last called bidder receives for an additional unit of reserve energy in the ascending order

of costs, is denoted as spot market price p∗. The distribution of the spot market price
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over the time period that is relevant for the next auction can be concluded through

experiences with foregone auctions and forecasts. This distribution function is denoted

γ(pc) and has the same properties as the identically named cost-duration curve in

Section 3.1. As there are several bidders awarded in the auction and the spot price

fluctuates during each time period, there is no simple second-price auction possible. In

such a more complex environment, a uniform-price auction (Cramton, 1998) is held.

This means each awarded bidder is called to supply balancing power whenever the spot

price p∗8 is higher or equal to the energy bid bci of this particular bidder i. This supplier

is paid the latest spot price for each energy unit he supplies. Note, this all holds just

for bidders which were awarded in the auction that was held before they were called

for balancing power supply. The part of the profit generated from actual energy supply

can then be formulated as:

πci (b
c
i , ci) = γ(bci)E[p∗ − ci | p∗ ≤ bci ]. (14)

That is, the probability γ(bci) that the spot market price is higher or equal than

the bid variable energy price bci times the expected value of the difference between spot

price p∗ and actual costs ci, given that the spot market price is higher or equal to the

bid.

Figure 3 visualizes this profit in a simplified example. In this example the variable

costs ci are lower than the price bid bci and hence, the profit is the sum of the two

shaded areas (green and blue). The boundaries of this area are the probability function

γ(p∗), the marginal costs ci and the probability that the spot price is higher or equal

to the price bid γ(bci). The interpretation behind this area is that every price p, higher

or equal to the bid (thus left of γ(bci)), has the probability γ(p) and generates a profit

8It is assumed that the probability distribution over the possible spot prices is continuous and hence
the probability that the spot price has a specific value p is zero P (p∗ = p) = 0.

17



Figure 3: Simplified visualization of bidder i’s profit.

of p − ci. To learn whether it is an optimal bidding strategy for bidder i to truthfully

reveal his variable costs ci we now consider the profit from supplying balancing power

in case of being awarded in more detail.9

πci (b
c
i , ci) = γ(bci)E[p∗ − c | p∗ ≤ bci ]

= γ(bci)(E[p∗ | p∗ ≤ bci ]− ci)

= γ(bci)

∫ γ(bci )
0

p(γ)dγ − ci
γ(bci)

= γ(bci)

∫ γ(bci )
0

p(γ)− ci dγ
γ(bci)

=

∫ γ(bci )

0

p(γ)− ci dγ.

9The last equality holds because the rectangle ci · γ(bci ) can also be expressed as
∫ γ(bci )
0

c dγ.
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The optimal bidding strategy can now be derived easily. The value of the integral∫ γ(bci )
0

p(γ)− ci dγ increases up to the point when bci = ci and decreases from there

on. This can also be seen in Figure 3 where at bci = ci the profit increases by the

white triangle between blue area and curve γ(p∗). Hence, the profit an awarded bidder

receives from supplying balancing power and bidding bci = ci is

πci (ci, ci) =

∫ γ(ci)

0

p(γ)− ci dγ, (15)

which is essentially the same as the valuation function of the buyer in Section 3.1.

The only difference is, that in this case it is the producer surplus and in the other case it

is the consumer surplus. The payment rule for the fixed cost component is also uniform

pricing, i.e. every awarded bidder receives the fixed price the bidder with the highest

rejected score bid. In the following this price is denoted by pk and the overall profit of

an awarded bidder i is πi(b
k
i , b

c
i , ki, ci) = πci (b

c
i , ci) + pk − ki. Thus, the winning bidders

profit is independent of their respective fixed price bid bki . However, the probability of

being awarded is depending on this bid component.

Before considering the scoring rule, we analyze the profit of the auctioneer. As he

always pays the spot market price for the full amount of balancing power demanded

at every moment in time, the profit from actually receiving balancing power is zero.

Additionally, the auctioneer has a negative profit from buying potential capacity in

πA(pk, pc) = −pk for each bidder. He may have also a valuation for this capacity

available but this is not considered in this paper, neither in this section nor in the

previous one, as it is not depending on the actual price and thus only a constant.

Once more, we assume the auctioneer seeks efficient outcomes and thus the scoring rule

represents the auctioneer’s profit

S(bki , b
c
i) = −bki (16)

19



This means, the bidders with the lowest fixed price bids are awarded in the auction.10

It may seem to be a price only auction but firstly, the bidders are required to also submit

their variable price bid to calculate the dispatch order, secondly, the variable costs have

also an influence on the fixed price bid as both costs and bids are relevant for the profit.

We already showed that it is optimal for any bidder i ∈ N to bid bci = ci, the next

step is to analyze the optimal bidding strategy for the fixed price bid. In an uniform

price auction where the highest rejected bid determines the price and single unit supply,

it is a weakly dominant strategy to bid that price that would lead to a profit of zero if

it would be the award price (Weber, 1983). Hence, the optimal bid for the fixed cost

component is

bki = πci (ci, ci)− ki. (17)

Thus, the bidder truthfully reveals his variable costs ci and prices the resulting profit

from supplying balancing power in his fixed price bid in. And thus, the fixed price bid

equals by definition the pseudotype of bidder i

λi(ki, ci) = πci (ci, ci)− ki. (18)

As a result, there is an efficient outcome and the main goals are achieved. There is

no need for the auctioneer the publish an official estimation or forecast of the function

γ(p∗) and thus it is not important whether the bidders believe this forecast or not which

is a major downside of the model of Bushnell and Oren (1994). If this approach also

gains an advantage regarding uncertainties in the forecast and development of γ(p∗)

and if there are main differences regarding the bidding incentives will be analyzed in

10The negation is necessary to be consistent throughout the paper where always the highest score
wins.
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the next seccction.

3.3. Comparison of both Concepts

This section will compare the models of Bushnell and Oren (1994) and Chao and

Wilson (2002) regarding the profit of bidders and auctioneer, characteristics of the

strategies and general requirements and assumptions. To make both models comparable

we will only consider one winning bidder.

At first we compare the pseudotype of the bidders in the two auction models. During

the remainder of this section we will always denote variables from the model of Bushnell

and Oren (1994) by a superscript B/O and those of the model of Chao and Wilson (2002)

with C/W . The respective pseudotypes are given in (13) and (18).

λ
B/O
i = v(ci)− ki

=

∫ γ(ci)

0

(p(γ)− ci)dγ − ki

= π
c,C/W
i (ci, ci)− ki

= λ
C/W
i .

So given the costs ki and ci, payment and scoring rule in both models, the pseu-

dotypes are alike. Recall that the pseudotype corresponds the type in a classical IPV

auction. Next, we analyze differences in the profit of bidders and auctioneer. First the

profit of a winning bidder under the assumptions that all bidders bid the strategy we

derived in the respective section of this paper
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π
B/O
i (bki , b

c
i , ki, ci) = (pk,B/O − ki) + (bci − ci)γ(bci)

bci=ci= (pk,B/O − ki).

The fixed payment pk,B/O is calculated as follows

pk,B/O = S−1(S(bkj , b
c
j), b

c
i) = bkj +

∫ bcj

bci

γ(pc)dpc

= bkj + v(bci)− v(bcj)

= kj + v(ci)− v(cj).

Overall this leads to

π
B/O
i (bki , b

c
i , ki, ci) = (kj − ki) + (v(ci)− v(cj)) , (19)

which is equal to the additional welfare bidder i can generate over bidder j. In the

model discussed in this section the winning bidder has the profit

π
C/W
i (bki , b

c
i , ki, ci) =

∫ γ(bci )

0

p(γ)− ci dγ + (pk,C/W − ki)

bci=ci= v(ci) + (pk,C/W − ki),

where v(·) is the valuation introduced in (19). The fixed payment is in this case
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pk,C/W = S−1(S(bkj , b
c
j), b

c
i) = −bkj

= −

(∫ γ(cj)

0

p(γ)− cj dγ − kj

)

= kj − v(cj).

This results in

π
C/W
i (bki , b

c
i , ki, ci) = (kj − ki) + (v(ci)− v(cj)) . (20)

Thus, as (19) equals (20), the profit for the bidders are the same under the given

assumptions in both models. The profit of all bidders that are not awarded in the

auction is zero. This hints that also the auctioneer’s profit is the same in both models.

Given the calculated prices, the auctioneer’s profit in the model Bushnell and Oren

(1994) is

π
B/O
B (pk,B/O, pc,B/O) = v(pc,B/O)− pk,B/O

= v(ci)− (kj + v(ci)− v(cj))

= v(cj)− kj.

This is exactly the profit the buyer would gain from the cost structure of the first

losing bidder j. This emphasizes the second-price characteristics used to construct the

scoring and payment rule. And in the model of Chao and Wilson (2002) there is the

same result
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π
C/W
B (pk,C/W , pc,C/W ) = −pk,C/W

= v(cj)− kj.

These results are summarized in Proposition 1.

Proposition 1 (Profit equivalencence in the models of Bushnell and Oren (1994) and

Chao and Wilson (2002)). Under the assumption that the cost-duration function γ(pc)

is common knowledge among the bidders, is equivalent to the belief of the bidders and

neither changes during nor after the auction, the following holds if the bidders play the

symmetric equilibrium strategies:

(1) The pseudotypes of a bidder with the same costs ki and ci is the same in both

models.

(2) The profit of all bidders is the same in both models.

(3) The profit of the buyer is the same in both models.

4. Conclusion

So, both scoring auctions, the explicit one from Bushnell and Oren (1994) as well

as the implicit11 one from Chao and Wilson (2002) lead to the same main results. The

bidders have the same incentives and have to have the same information. As already

mentioned, both models differ in this regard that the auctioneer does not have to publish

a cost-duration curve in the model of Chao and Wilson (2002) and thus, there is no risk

that some bidders have a different belief. However, both models are equally affected by

uncertainties and changes in the cost-duration function.

11Implicit because the scoring rule corresponds a price only auction.
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A formalized look at the strategic considerations of the bidders reveal that they are

almost the same independent if it is an explicit scoring auction (Bushnell and Oren,

1994) or an implicit one (Chao and Wilson, 2002). Therefore, from a formal point of

view, both principles lead to the same results although we recognize that there might

be differences in practical application. Nevertheless, the advantages that Chao and

Wilson (2002) claim for their model can not be confirmed, instead this paper refutes

this argument.

Scoring auctions are also applied in other sectors, for example in the construction

sector. Herbsman et al. (1995) analyze explicit and implicit scoring auctions in highway

construction projects. For such projects, it can also be shown that implicit and explicit

scoring auctions lead to the same results. The reasoning is the same. Bidders partici-

pating in implicit scoring auctions price their additional payoff due to their quality in

their bids in.
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