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Abstract

Favoring a bidder through a Right of First Refusal (ROFR) in First-Price Auctions is not only

common practice in industrial procurement auctions, but can also be a meaningful tool to

increase the auctioneer’s expected revenue. We compare Last-Call Auctions (i.e. First-price

Auctions with ROFR) to standard Second-price Auctions with asymmetric bidders, where

the bidders’ strengths are modeled by either linear, strictly convex or strictly concave beta

distributions. We show that if the asymmetry between bidders is sufficiently high and the

weak bidder is weak enough, the Last-Call Auction can outperform a standard Second-Price

Auction in terms of expected auction revenue.

Our analysis is based on the work of Arozamena and Weinschelbaum (2009) and yields

that for specific value distributions of the favored bidder, the non-favored bidder’s optimal bid

is more aggressive in a Last-Call Auction than in a First-Price Auction without favoritism. We

show that a profit-maximizing auctioneer always (weakly) prefers to favor to favor the weak

bidder. However, for most combinations of asymmetric bidders the expected auction revenue

remains the same independent whether the weak or strong bidder is favored. Furthermore,

we characterize combinations of bidders’ value distributions in which the auctioneer gains

a higher expected profit by granting a ROFR to the weak bidder in a First-Price Auction

instead of conducting a Second-Price Auction without favoritism.

Keywords: auctions, industrial procurement, asymmetric bidders, right of first refusal,

favoritism
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1. Introduction

In auctions different forms of favoritism can be established in order to accommodate the

individual relationship between seller and buyer. We focus on favoritism through the assign-

ment of a so called Right of First Refusal (ROFR). This kind of favoritism is especially used

for long-term business partners and grants an exceptional position in the selling or procure-

ment process. For example, if a firm plans to procure certain products via a procurement

auction, but wants to protect their favorite long-term supplier from the competition of poten-

tially unknown market-entrants she can assign a ROFR to her favorite supplier. That is, the

favored supplier must not participate in the competitive bidding process, but has the chance

to match the winning bid afterwards. A broad variety of practices of ROFR can be found in

Walker (1999).

The scientific literature examines in First-Price Auctions as well as in Second-Price Auctions

several impacts of granting a Right of First Refusal on bidding behavior and initial auction

goals as expected auction revenue and efficiency. Bikhchandani et al. (2005) state that this

form of favoritism will never be advantageous in terms of increased auction revenue and even

may lead to inefficient outcomes in Second-Price Auctions. All mentioned authors in the

following examine First-Price Auctions with ROFR. Though most of them consider the coali-

tion of auctioneer and favored bidder and hence only investigate the joint surplus of both.

For example, Choi (2009) states for two symmetric bidders that the joint surplus of auction-

eer and favored bidder can be increased by the assignement of a ROFR, however, only at

the expense of the third party’s payoff. Burguet and Perry (2007) find that the auctioneer

may benefit in a procurement auction with two asymmetric bidders from granting a ROFR

combined with certain forms of bribery. In contrast to those, we aim to find situations in

which the auctioneer’s expected revenue increases independent from potential compensation

payments by the favored bidder or regarding a joint surplus of favored bidder and auctioneer.

Consequently, in our work the auctioneer’s revenue is analyzed in isolation. This approach

is also adopted by Brisset et al. (2012), who show that heterogeneous risk attitudes of the

bidders may be the crucial factor for an increased auction revenue. Furthermore, Lee (2008)

demonstrates that a certain degree of asymmetry among bidders’ strengths yields a higher

expected profit for the auctioneer in a First-Price Auction with assigning a ROFR than with-
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out. Related to his work we address the question under which assumptions regarding two

asymmetric bidders the auctioneer can benefit from favoring one of the bidders in First-Price

Auctions compared to incentive compatible Second-Price Auctions. For that, we assume

different forms of asymmetries between the participating bidders. Beyond the work of Lee

(2008), who defines the asymmetry by uniform distributions on staggered intervals, we model

the bidders’ value distributions on a common interval by linear, strictly convex and strictly

concave beta distributions. According to the work of Arozamena and Weinschelbaum (2009)

the curvature of the favored bidder’s value distribution may play a decisive role with respect

to the aggressiveness of the non-favored bidder’s bidding behavior. Furthermore, we find an

increase in the expected auction revenue in case of asymmetric bidders - depending on the

non-favored bidder’s value distribution . 1

2. Model

We define a Last-Call Auction as a First-Price sales Auction, in which the auctioneer

favors one of the bidders by awarding a Right of First Refusal.2 In a sales auction, the Right

of First Refusal, hereinafter referred to as ROFR, offers the favored bidder the option to buy

the good at the best price submitted by the competing bidders. After the auctioneer has

chosen a favored bidder and proclaimed her decision to all participants, a sealed-bid First-

Price Auction is conducted. Hence the highest submitted bid determines the price the winner

has to pay. However, the highest bidder will only win the auction only if the favored bidder

does not exercise the ROFR. In case the favored bidder exercises her ROFR and so accepts

the highest bid, she will win the auction and acquire the good at the resulting price. Thus,

the resulting price is always the highest submitted bid in a Last-Call Auction, the winner,

however, can either be the favored bidder or the highest non-favored bidder, if the favored

bidder declines to exercise the ROFR. Instead of to exercise the ROFR we also say to match

the winning bid. Further, it is to emphasize that the favored bidder only is allowed to match,

if her initial bid was lower than the winning bid or she even did not submit any initial bid at

1We act on the assumption of a two-bidder case, i.e. one favored and one non-favored bidder.
2Our results can easily be modified for procurement auctions.
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all.3 We limit our work on the following mechanism: The favored bidder does not submit any

initial bid, but only decides at the second stage whether to accept the winning bid or not.

This basic auction mechanism is deduced from the work of Lee (2008).

As already discussed by Güth and Van Damme (1986) a Last-Call Auction with two

bidders can be interpreted as an auction, where the situation of the non-favored bidder cor-

responds to that in a First-Price Auction and the favored bidder’s situation to that in a

Second-Price Auction. The non-favored bidder determines the price she has to pay in case

of winning through her submitted bid and the favored bidder decides whether to match her

opponent’s bid. 4

Our analysis focuses on a two-bidder case for Last-Call Auctions. Accordingly one non-

favored bidder I and one favored bidder II compete against each other. We suppose an

independent private value model, i.e. both bidders assign values xI and xII to the good,

which are private information and independent of each other. We restrict our analysis to risk-

neutral bidders and cases in which distributions of both bidders FI and FII are either linear,

strictly concave or strictly convex beta distributions with support on [0, 1] and publicly known.

We assume that the auctioneer does not assign a positive value to the good, i.e. x0 = 0..The

number of bidders (here n = 2) as well as the fact that bidders are risk-neutral is common

knowledge. In the course of the work this model is preserved as far as either symmetric or

asymmetric bidders are supposed. We call a bidder stronger than her opponent if her value

distribution dominates her opponents’ one acccording to the reverse hazard rate order.

3. Analysis

The non-favored bidder’s bid bI always determines the price in the two bidder case since

we suppose that the favored bidder II does not submit an initial bid, but only matches the

non-favored bidder’s bid if applicable. Thus, first the equilibrium bidding strategy of the non-

favored and hence price-determining bidder is calculated. Afterwards we will demonstrate

how the information about the favored bidder’s strength affects the non-favored bidder’s bid.

3A Last-Call Auction can be considered as a two-stage mechanism, where at the first stage a First-Price
Auction is conducted and at the second stage the favored bidder has the option to match the winning bid.

4In particular, supposing two symmetric bidders, whose valuations are uniformly distributed on [0, 1], the
equilibrium bidding function of the non-favored bidder in a Last-Call Auction is exactly the same as in a
First-Price Auction. Further, the situation of the favored bidder corresponds exactly to that in a Second-Price
Auction as well.
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Proposition 1. The non-favored bidder I’s equilibrium bidding strategy βI : xI 7→ bI in a

Last-Call Auction is

βI(xI) = xI −
FII(βI(xI))

fII(βI(xI))
, (1)

where xI is bidder I’s valuation and the favored bidder’s value distribution and density func-

tions are given by FII and fII .

Proof. The expected profit of bidder I is the difference between her valuation xI and her

bid bI = βI(xI) in case of winning, that is, if bI exceeds the favored bidder’s valuation xII

and consequently she declines to match. If bI < xII , the favored bidder will match and

consequently bidder I’s profit is zero. Let FII be the distribution function of the favored

bidder’s valuation. It follows

E[πI ] = (xI − βI(xI))P (XII ≤ βI(xI)) = (xI − βI(xI))FII(βI(xI)).

Suppose that bidder I wants to maximize her expected profit through her submitted bid

βI(xI). With the first-order condition follows

∂

∂βI(xI)
E[πI ] = xIfII(βI(xI))− FII(βI(xI))− βI(xI)fII(βI(xI))

!
= 0,

⇔ βI(xI) = xI −
FII(βI(xI))

fII(βI(xI))
.

Consequently, the non-favored bidder always shades her bid in equilibrium. By maximizing

the expected rent the non-favored bidder finds herself in a trade-off situation: On the one

hand a higher bid increases her winning probability. On the other hand, a higher bid reduces

her profit in case of winning, because she determines the payment through this bid. So the

equilibrium bidding strategy balances these opposite effects to maximize the bidder’s expected

rent. The non-favored bidder’s equilibrium bidding behavior is in the further analysis easier

to handle by utilizing the explicit inverse equilibrium bidding function β−1I : bI 7→ xI instead

of the implicit equilibrium bidding function presented above. Therefore we will demonstrate

below that the equilibrium bidding function is strictly monotone and therefore bijective and
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invertible for strictly concave, convex and linear beta value distribution functions.

Remark 1. If βI(xI) is bijective, the inverse equilibrium bidding strategy of the non-favored

and price-determining bidder I in a Last-Call Auction is given by

β−1I (p) = p+
FII(p)

fII(p)
,

where p ∈ [0, 1] is the resulting price and FII the favored bidder II’s value distribution with

corresponding density fII .

Proof. This inverse equilibrium bidding strategy follows immediately from equation 1, where

p equals the non-favored bidder’s bid βI(xI) and further x1 = β−1I (p).

Remark 2. Let the favored bidder’s value distribution FII be a linear, strictly concave or

strictly convex beta distribution. Then the equilibrium bidding strategy of the non-favored

bidder in a Last-Call Auction βI(xI) is strictly monotone and hence bijective.

Proof. The monotony of βI(xI) is implied by the monotony of β−1I (p) , i.e. by ∂
∂pβ

−1
I (p) > 0

∀p ∈ [0, 1]. First a linear beta distribution FII(p) = p is supposed for the favored bidder’s

value distribution. Then differentiating β−1I (p) = 2p with respect to p ensues

∂

∂p
β−1I (p) = 2 > 0 ∀p ∈ [0, 1].

Assuming FII is a strictly convex beta distribution for the derivative of β−1I (p) = α
α+1p with

respect to p follows for α > 1

∂

∂p
β−1I (p) =

α

α+ 1
> 0 ∀p ∈ [0, 1].

Finally, if FII is a strictly concave beta distribution after differentiating β−1I (p) = p+ 1−(1−p)γ
γ(1−p)γ−1

it holds for γ > 1

∂

∂p
β−1I (p) = 1 +

1

γ

(
1− 1− γ

(1− p)γ

)
> 0 ∀p ∈ [0, 1].
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The inverse equilibrium bidding strategy depends on the favored bidder’s value distribution

FII and density function fII , which are common knowledge. That is the price determining

bid βI(xI) is influenced by the strength of the competing favored bidder. The stronger the

favored bidder the more aggressive is the non-favored bidder’s submitted bid, i.e. a stronger

opponent will lead the non-favored bidder to offer a higher price.

The fact that the non-favored bidder offers a higher price if the strength of her opponent

increases is intuitive: a stronger opponent will lower the winning probability and the non-

favored bidder attends to compensate this effect by bidding more aggressively.

In the next step, the expected auction revenue in a Last-Call Auction is deduced. On the

one hand the non-favored bidder’s equilibrium bid depends on her individual valuation and on

the other hand it is influenced by the strength of the competing favored bidder. Consequently,

the expected auction revenue, finally determined by the non-favored bidder’s bid, is affected

by both bidders’ strengths.

Proposition 2. The distribution function of the expected payment in a Last-Call-Auction is

given by

FLCA(p) = FI(β
−1
I (p)),

where β−1I (p) = p+ FII(p)
fII(p)

is the inverse equilibrium bidding strategy of the non-favored bidder

I and p ∈ [0, 1].

Proof. The distribution function FLCA(p) is the probability that the expected auction revenue

is lower than or equal to p. That is, the probability that the price-determining bid bI = βI(xI),

where xI is the non-favored bidder’s valuation, is lower than or equal to p. Therefore the

distribution function FLCA(p) corresponds to the probability P (bI ≤ p) = P (XI ≤ β−1I (p)) =

FI(β
−1
I (p)).

Proposition 3. The expected auction revenue in a Last-Call Auction is

E[pLCA] =

∫ ∞
0

1− FLCA(p)dp =

∫ ∞
0

1− FI(β−1I (p))dp (2)

Proof. Let the distribution of the expected payment in the Last-Call Auction be given by

FLCA(p). Then for any p ∈ [0, 1] Proposition (2) yields the assertion.
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Notice that proposition 3 only applies if the favored bidder was selective elected and not

if one of the bidders is favored by chance.

In the following, we demonstrate under particular assumptions that for asymmetries be-

tween bidders’ strengths hat the bidding behavior of the non-favored bidder changes and as

a consequence the expected auction revenue in a Last-Call Auction may exceed that in a

Second-Price Auction. Consequently, the kind of asymmetry between bidders is a crucial

factor for the auctioneer to decide whether to conduct a Last-Call or a Second-Price Auc-

tion. 5 For that purpose, two asymmetric bidders are considered, one strong bidder and one

weak bidder. The bidders’ valuations will be drawn independently from the same interval

[0, 1], where the weak bidder’s distribution Fw on [0, 1] is stochastically dominated by the

strong bidder’s distribution Fs on [0, 1] according to the reverse hazard-rate order. Further

it holds that Fs first-order stochastically dominates Fw, i.e. Fs(x) ≤ Fw(x) for all x ∈ [0, 1],

and therefore E[Xw] ≤ E[Xs]. That is, the expected valuation of the strong bidder is higher

than the weak bidder’s expected valuation for the good. Further it is assumed that the value

distributions are either linear, strictly convex or strictly concave beta distributions.

3.1. Impact of the ROFR on bidding behavior

According to Bagnoli and Bergstrom (2005) linear, strictly concave or strictly convex beta

distributions are logconcave. Arozamena and Weinschelbaum (2009) find that for logconcave

value distributions symmetric bidders may bid more or less aggressive in a Last-Call Auction

than in a First-Price Auction depending on the ratio ρ(x) = F (x)
f(x) : If ρ(x) is strictly concave

(convex) in x, symmetric bidders bid more (less) aggressively, whereas the bidding behavior

remains unaltered in case ρ(x) is linear in x.

Remark 3. The bidding behavior in a Last-Call Auction corresponds to that in a First-Price

Auction in case the non-favored (price determining) bidder faces an opponent with a linear

or strictly convex beta distribution. In case the non-favored bidder’s opponent has a strictly

concave beta distribution the bidding behavior is more aggressive in a Last-Call Auction than

in a First-Price Auction.

5In the symmetric case, the auctioneer does not benefit from granting a ROFR to any bidder for the
considered combinations of beta distributions.
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Proof. As we consider an asymmetric two-bidder case, the strength of the favored bidder is

crucial for the bidding strategy of the non-favored and price determining bidder. Hence, the

favored bidder’s value distribution and density function are relevant for the ratio ρ(x) = F (x)
f(x) .

Let F (x) = x and F̃ (x) = xα be the favored bidders’ value distributions, where α > 1. Then

both value distributions are logconcave, see Bagnoli and Bergstrom (2005), and it follows

ρ(x) =
F (x)

f(x)
=
x

1
= x ,

ρ̃(x) =
F̃ (x)

f̃(x)
=

xα

αxα−1
=
x

α

Consequently, ρ(x) and ρ̃(x) are linear in x and with Arozamena and Weinschelbaum (2009)

we can follow, that the bidding behavior is unaltered if the favored bidder’s value distribution

is either a striclty convex or linear beta distribution.

Let F̂ (x) = 1−(1−x)γ be the favored bidders’ value distribution, where γ > 1. According

to Bagnoli and Bergstrom (2005) F̂ (x) is logconcave and further,

ρ̂(x) =
F̂ (x)

f̂(x)
=

1− (1− x)γ

γ(1− x)γ−1

is strictly concave. With Arozamena and Weinschelbaum (2009), we conclude that the non-

favored bidder’s bid is more aggressive in a Last-Call Auction than in a First-Price Auction.

3.2. Favoring the right bidder

Remember that conducting a Last-Call Auction with asymmetric bidders means for the

auctioneer to decide which bidder is granted the ROFR. In the following we focus for the

defined asymmetric bidder constellations on the question, if a selective assignment is advanta-

geous for the auctioneer or not. For that purpose, we demonstrate that if the auctioneer knows

who of the participating bidders in the Last-Call Auction is the strong and who the weak one,

it might be meaningful to favor the correct bidder in order to gain a higher expected profit.

That is, we consider the different expected payments in case of favoring the strong and the

weak bidder. We suppose two asymmetric bidders characterized either by a convex-convex,
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linear-convex or concave-linear combination of value distributions. For the convex-convex and

linear-convex combination the bidding behavior of the non-favored bidder remains unaltered

since in both cases the price-determining bidder faces an opponent whose value distribution

and density function lead to linear ratios ρ(x) or ρ̃(x), see Remark 3. Hence it can be shown

that for a linear-convex and convex-convex combination the expected auction revenue in the

Last-Call Auction is the same independent of favoring the weak or strong bidder, first. And

second, that this excpected auction revenue never exceeds that in a Second-Price Auction.

Proposition 4. Let Fs(x) = xα and Fw(x) = x be the bidders’ value distributions, α > 1.

The auctioneer’s expected profit if the weak bidder is favored E[pLCAw ] equals the expected

payment with granting the ROFR to the strong bidder E[pLCAs ], ∀α > 1, i.e.

E[pLCAw ] = E[pLCAs ].

Proof. First we describe the expected payments E[pLCAw ] and E[pLCAs ] in dependence of α and

then we prove that the proposition above applies for all α > 1. In order to calculate E[pLCAw ],

we need the strong bidder’s inverse bidding strategy, because she is the price-determining

bidder in this case,

β−1s (p) = p+
Fw(p)

fw(p)
= 2p.

And for the bidding strategy βs(x) follows

βs(x) =
1

2
x, particularly βs(1) =

1

2
.

So the auctioneer’s expected rent if she favors the weak bidder, is

E[pLCAw ] =

∫ βs(1)

0
1− Fs(β−1s (p))dp =

∫ 1
2

0
1− (2p)αdp =

1

2
− 1

2(α+ 1)
=

1

2

α

α+ 1
. (3)

Under the same assumptions and granting a ROFR to the strong bidder follows for the auction
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revenue

E[pLCAs ] =

∫ βw(1)

0
1− Fw(β−1w (p))dp =

∫ α
α+1

0
1− α+ 1

α
pdp

=
α

α+ 1
− 1

2

α+ 1

α

α2

(α+ 1)2
=

1

2

α

α+ 1
, (4)

where the inverse equilibrium bidding strategy of the weak bidder, who determines the price,

is

β−1w (p) = p+
Fs(p)

fs(p)
= p+

pα

αpα−1
=
α+ 1

α
p.

And for the equilibrium bidding strategy βw(x) holds

βw(x) =
α

α+ 1
x, particularly β2(1) =

α

α+ 1
.

Comparing (3) and (4) provides the desired result.

Thus, in the case of a weak bidder with a linear distribution and a stron bidder with a

convex distribution the auctioneer’s expected profit remains the same whether she favors the

weak or the strong bidder, although the weak bidder submits a relatively more aggressive bid

βw(x) for α > 1 than the strong bidder with βs(x). The expected payment if the weak bidder

determines the price, i.e. the strong bidder is favored, never exceeds the expected payment if

the weak bidder is favored. The reason is that the weak bidder’s expected valuation E[Xw] is

lower than the strong bidder’s one E[Xs] her more aggressive bidding behavior is outweighed

by her weakness compared to the strong bidder, which results in equal expected profits, i.e.

E[pLCAw ] = E[βw(Xs)] = E[βs(Xs)] = E[pLCAs ].

Proposition 5. Let Fs(x) = xαs and Fw(x) = xαw be the bidders’ value distributions, where

1 < αw < αs. Then the auctioneer’s expected profit if the weak bidder is favored E[pLCAw ]

equals the expected profit if she grants the ROFR to the strong bidder E[pLCAs ], ∀αw, αs > 1,

i.e.

E[pLCAw ] = E[pLCAs ].

11



Proof. If the weak bidder is favored the strong bidder will determine the price, where the

strong bidder’s inverse equilibrium bidding strategy in the convex-convex case is

β−1s (p) = p+
Fw(p)

fw(p)
= p+

pαw

αwpαw−1
=
αw + 1

αw
p.

This implies the strong bidder’s bidding function

βs(x) =
αw

αw + 1
x, particularly βs(1) =

αw
αw + 1

.

So the expected payment in a Last-Call Auction, where the weak bidder is granted a ROFR,

is

E[pLCAw ] =

∫ βs(1)

0
1− Fs(β−1s (p))dp =

∫ αw
αw+1

0
1−

(
αw + 1

αw
p

)αs
dp

=
αw

αw + 1
−
(
αw + 1

αw

)αs ( αw
αw + 1

)αs+1 1

αs + 1
=

αw
αw + 1

αs
αs + 1

.

Favoring the strong bidder leads to the same inverse equilibrium bidding strategy for the weak

bidder, where αw is replaced by αs and it holds βw(1) = αs
αs+1 . Therefore the auction revenue

if the strong bidder is favored amounts to

E[pLCAs ] =

∫ βw(1)

0
1− Fw(β−1w (p))dp =

αs
αs + 1

αw
αw + 1

.

Both expected payments E[pLCAw ] and E[pLCAs ] are symmetric in their arguments αs and αw

and therefore correspond to each other for all αw, αs > 1.

Notice that for αs, αw →∞ both bidders’ bids will approach their true valuations. Further,

the weak bidder’s bidding strategy is more aggressive than the strong bidder’s one, which

is obvious, because the weak bidder faces a strong competitor, whereas the strong bidder

competes against a weak one. However, the expected auction revenue by favoring the strong

bidder never exceeds the expected auction revenue by favoring the weak bidder. The reason

is that the more aggressive bidding behavior of the non-favored weak bidder is compensated

by her lower expected valuation.

For the concave-linear combination the expected payment by favoring the weak bidder
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E[pLCAw ] and the expected payment by favoring the strong bidder E[pLCAs ] differ and do not

correspond to each other as seen before in the linear-convex or convex-convex combination.

We find that under these assumptions favoring the weak bidder always generates a higher or

equal expected revenue for the auctioneer than favoring the strong bidder.

Proposition 6. Let Fs(x) = x and Fw(x) = 1− (1− x)γ be the bidders’ value distributions,

γ > 1. Then the expected payment in a Last-Call Auction is higher or equal if the auctioneer

grants the ROFR to the weak instead of the strong bidder, i.e.

E[pLCAs ] ≤ E[pLCAw ].

Proof. First we calculate the expected payment dependent of γ in case of favoring the weak

bidder. So the inverse equilibrium bidding function of the strong and price-determining bidder

is

β−1s (p) = p+
Fw(p)

fw(p)
= p+

1− (1− p)γ

γ(1− p)γ−1
= p+

1

γ(1− p)γ−1
− 1− p

γ
.

In order to calculate the expected auction revenue, the highest possible bid βs(1) is needed,

which follows with

p+
1

γ(1− p)γ−1
− 1− p

γ
= 1

⇔ (γ + 1)p+
1

(1− p)γ−1
= γ + 1

⇔ 1

(1− p)γ
= γ + 1

⇔ 1− γ

√
1

γ + 1
= p ⇒ β1(1) = 1− γ

√
1

γ + 1
.

Then the expected payment in the Last-Call Auction with favoring the weak bidder is

E[pLCAw ] =

∫ β1(1)

0
1− Fs(β−1s (p))dp =

∫ 1− γ
√

1
γ+1

0
(1− p− 1

γ(1− p)γ−1
+

1− p
γ

)dp

=
1

2
(1 +

1

γ
)− 1

γ(2− γ)
+ (γ + 1)

− 2
γ

(
−1

2
− 1

2γ
+

γ + 1

γ(2− γ)

)
. (5)

In order to determine the expected auction revenue with favoring the strong bidder the fol-
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lowing inverse equilibrium bidding function of the weak and price-determining bidder is used

β−1w (p) = p+
Fs(p)

fs(p)
= 2p.

Hence the weak bidder’s equilibrium bidding function as well as her highest possible bid yields

βw(x) =
1

2
x, particularly βw(1) =

1

2
.

So the auctioneer’s expected profit is

E[pLCAs ] =

∫ βw(1)

0
1− Fw(β−1w (p))dp =

∫ 1
2

0
1− (1− (1− 2p)γ)dp

=

∫ 1
2

0
(1− 2p)γdp = 0 +

1

2

1

γ + 1

=
1

2(γ + 1)
.

We demand E[pw]− E[ps] ≥ 0 and it follows

E[pLCAw ]− E[pLCAs ] ≥ 0 ⇔ −γ3 − γ2 + γ
(

(γ + 1)
2γ−2
γ − 1

) ≥ 0, γ ≤ 2

< 0, γ > 2

For the polynom −γ3 − γ2 + γ
(

(γ + 1)
2γ−2
γ − 1

)
with roots at γ = 0, 1, 2 applies

−γ3 − γ2 + γ
(

(γ + 1)
2γ−2
γ − 1

) ≥ 0, γ ≤ 0 or 1 ≤ γ ≤ 2

< 0, 0 < γ < 1 or γ > 2

Because of assuming that Fw(x) is strictly convex only γ ≥ 1 is regarded and we gain

E[pLCAw ]− E[pLCAs ] ≥ 0, for all γ ≥ 1.

3.3. Conditions for a-priori superiority of Last-Call Auctions

In the following, we first demonstrate that the auction revenue in a Second-Price Auc-

tion always exceeds that in a Last-Call Auction for the linear-convex and the convex-convex
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combination.

Proposition 7. Let Fs(x) = xα and Fw(x) = x be the bidders’ value distributions, α > 1.

Then the expected payment in the Second-Price Auction exceeds that in a Last-Call Auction

for all α > 1, i.e.

E[pLCA] < E[pSA]

Proof. In the Second-Price Auction the bidders follow a weakly dominant bidding strategy,

which signifies to bid their true valuations. This property implies that β(1) = 1 for all bidders.

Hence with proposition ?? the auction revenue in the Second-Price Auction amounts to

E[pSA] =

∫ β(1)

0
1− FSA(p)dp =

∫ 1

0
1− Fs(p)− Fw(p) + Fs(p)Fw(p)dp

=

∫ 1

0
(1− pα − p+ pα+1)dp =

1

2
− 1

α+ 1
+

1

α+ 2
.

Comparing the expected payments in the Second-Price and Last-Call Auction, which follows

from Proposition 4, provides

E[pLCA] =
1

2

α

α+ 1
<

1

2
− 1

α+ 1
+

1

α+ 2
= E[pSA]

⇔ 0 < α.

To conclude, with an increasing α > 1 the expected auction revenue will raise in both

auction forms and converge to 1
2 , The reason for the higher expected payment is that one of

the bidders, in this case the strong bidder, becomes stronger since α increases and therefore

this strong and price-determining bidder is expected to submit an higher bid. In a Second-

Price Auction the expected payment will also raise, if one of the potentially price-determining

bidders becomes stronger. The fact that the expected auction revenues will never exceed 1
2 in

this linear-convex combination is obvious: Since we suppose that the weak bidder is favored

in the Last-Call Auction the strong bidder determines the payment in dependence of the

weak bidder’s strength, particularly it is βs(xs) = 1
2xs. Consequently, the price-determining
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bid converges to 1
2 because the strong bidder’s expected valuation E[Xs] converges to 1 for

α → ∞. In the Second-Price Auction the second-highest bid or valuation will determine

the price. If α increases the strong bidder’s expected valuation converges to 1 and the weak

bidder’s expected valuation is 1
2 , which then will determine the expected payment.

Proposition 8. Let Fs(x) = xαs and Fw(x) = xαw be the bidders’ value distributions, 1 <

αw < αs. Then the expected payment in the Second-Price Auction exceeds that in the Last-Call

Auction, i.e.

E[pLCA] < E[pSA].

Proof. The weakly dominant bidding strategy in a Second-Price Auction is to bid one’s true

valuation, therefore it follows β(1) = 1 and the expected payment in the Second-Price Auction

is

E[pSA] =

∫ β(1)

0
1− FSA(p)dp =

∫ 1

0
(1− pαs − pαw + pαs+αw)dp

= 1− 1

αs + 1
− 1

αw + 1
+

1

αs + αw + 1
.

So it follows

E[pLCA] =
αw

αw + 1

αs
αs + 1

< 1− 1

αs + 1
− 1

αw + 1
+

1

αs + αw + 1
= E[pSA]

⇔ αs + αw + 1 < (αs + 1)(αw + 1)

⇔ 0 < αsαw.

which is true for all αw, αs > 1.

Finally, we state that for an increasing αs as well as for an increasing αw the expected

payment in both auction forms is augmented, where the expected payments converge to 1

for αs, αw → ∞. This is immediately obvious, because both bidders become stronger, i.e.

their expected valuations, E[Xs] and E[Xw], converge to 1 for αs, αw → ∞. Notice that for

αs = 1 or αw = 1 the linear-convex combination is obtained as a special case. In the following

the expected auction revenues in a Last-Call Auction are compared to that in a Second-Price
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Auction for the concave-linear combination. For that purpose, we first assume that the strong

bidder is favored in the Last-Call Auction and find that in this case the Second-Price Auction

still outperforms the Last-Call Auction in terms of expected auction revenue. Nevertheless,

this result may change if the weak bidder is favored in the Last-Call Auction.

Proposition 9. Let Fs(x) = x and Fw(x) = 1− (1− x)γ be the bidders’ value distributions,

γ > 1. Then the expected payment in a Last-Call Auction with favoring the strong bidder

E[pLCAs ] is always lower than that in a Second-Price Auction E[pSA], i.e.

E[pLCAs ] < E[pSA].

Proof. If the strong bidder is favored the weak bidder determines the payment through her

bid. Therefore the equilibrium bidding strategy of the weak non-favored bidder is required as

well as its inverse function

β−1w (p) = p+
Fs(p)

fs(p)
= 2p⇔ β2(x) =

1

2
x.

With βw(1) = 1
2 for the expected payment in a Last-Call Auction, where the strong bidder is

favored, ensues

E[pLCAs ] =

∫ βw(1)

0
1− FLCA(p)dp =

∫ 1
2

0
1− Fw(β−12 (p))dp

=

∫ 1
2

0
(1− (1− (1− 2p)γ)) dp =

∫ 1
2

0
(1− 2p)γdp

=
1

2γ + 2
. (6)

Comparing (7) and (6) leads to

E[pLCAs ] =
1

2γ + 2
<

1

γ + 2
= E[pSA]⇔ γ + 2 < 2γ + 2⇔ γ > 0,

which holds for all γ ≥ 1.

The next proposition will demonstrate that granting a ROFR to the weak bidder generates

a higher expected auction revenue in a Last-Call Auction than in a Second-Price Auction if

17



the parameter γ of the weak bidder’s concave value distribution exceeds a certain value.

Proposition 10. Let Fs(x) = x and Fw(x) = 1− (1−x)γ be the bidders’ value distributions,

γ > 1. Then the expected payment in the Last-Call Auction, where the weak bidder is favored,

exceeds that in the Second-Price Auction if γ & 2.74509, i.e.

E[pSA] < E[pLCAw ], for all γ & 2.74509.

Proof. We suppose that in the Second-Price Auction the bidders follow their weakly dominant

bidding strategy and bid their true valuations, it holds β(1) = 1 and the expected payment is

E[pSA] =

∫ β(1)

0
1− FSA(p)dp =

∫ β(1)

0
1− (1− (1− p)γ+1)dp =

∫ 1

0
(1− p)γ+1dp

=
1

γ + 2
. (7)

Assuming that the ex ante weak bidder is favored by the ROFR, the expected payment in

the Last-Call Auction exceeds that in the Second-Price Auction if

E[pSA] < E[pLCAw ]

⇔ −γ4 + γ3 − 2γ2 + (γ + 1)
1− 2

γ
(
γ3 + 2γ2

)
> 0, if γ < 2

≤ 0, if γ ≥ 2

⇔ γ & 2.74509.

Thus a selective assignment of the ROFR to the weak bidder yields a higher expected

profit for the auctioneer if a certain degree of asymmetry is given among the participating

bidders, which is illustrated in figure 1.

Moreover, we raise the question, for which degree of asymmetry a randomly granted ROFR

also leads to a higher expected auction revenue than the expected auction revenue in a Second-

Price Auction with the same participants. In other words, the auctioneer only knows that the

two participating bidders are unequally strong, but she is not informed about which bidder

is the weak and which the strong one. For the selective favoritism of the weak bidder it holds

18



Figure 1: Concave-Linear Combination: Expected payment in a Last-Call Auction and a Second-Price Auction
by increasing γ

that there exists a degree of asymmetry such that a higher expected auction revenue can be

gained, which is also possible for a randomly assigned ROFR. However, favoring one of the

ex ante asymmetric bidders by chance will require a higher degree of asymmetry in order to

gain a higher expected auction revenue in the Last-Call than in the Second-Price Auction.

Finally, we state that a weak bidder with strictly concave beta distributed valuations

entails advantageous properties for the expected auction revenue in a Last-Call Auction com-

pared to weak bidders with linear or convex beta distributions reagrding their values.
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4. Conclusion

To summarize, in the concave-linear combination it makes a difference whether the weak

or the strong bidder is favored, in contrast to the other combinations. In this case we show

that the auctioneer is always better off in regard to her expected profit by favoring the weak

bidder. Further, besides a sufficient degree of asymmetry, the weak bidder’s concave value

distribution is essential for the higher expected auction revenue in a Last-Call Auction. In

this case, if the ROFR is appointed selectively to the weaker bidder, the Last Call Auction

generates higher expected auction revenues than a standard Second Price auction. Even if the

ROFR is randomly granted to one of the two asymmetric bidders, the auction revenue in a

Last-Call Auction will exceed the revenue in a Second-Price Auction as soon as the asymmetry

is sufficiently large.
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